# Introduction

M. Pitkänen<sup>1</sup>, February 1, 2006

<sup>1</sup> Department of Physical Sciences, High Energy Physics Division, PL 64, FIN-00014, University of Helsinki, Finland. matpitka@rock.helsinki.fi, http://www.physics.helsinki.fi/~matpitka/. Recent address: Puutarhurinkatu 10,10960, Hanko, Finland.

# Contents

| 1 | Bac                                                      | Background                                        |                                                                                       |    |  |
|---|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|----|--|
| 2 | <b>Bas</b><br>2.1<br>2.2<br>2.3                          | ic Ideas<br>TGD as<br>TGD as<br>Fusion<br>time co | <b>Ideas of TGD</b><br>TGD as a Poincare invariant theory of gravitation              |    |  |
| 3 | The                                                      | five th                                           | reads in the development of quantum TGD                                               | 5  |  |
| - | 3.1                                                      | Quantu                                            | Im TGD as configuration space spinor geometry                                         | 5  |  |
|   | 3.2                                                      | p-Adic                                            | TGD                                                                                   | 6  |  |
|   | 3.3                                                      | TGD as                                            | s a generalization of physics to a theory consciousness                               | 7  |  |
|   |                                                          | 3.3.1                                             | Quantum jump as a moment of consciousness                                             | 7  |  |
|   |                                                          | 3.3.2                                             | The notion of self                                                                    | 8  |  |
|   |                                                          | 3.3.3                                             | Relationship to quantum measurement theory                                            | 8  |  |
|   |                                                          | 3.3.4                                             | Selves self-organize                                                                  | 9  |  |
|   |                                                          | 3.3.5                                             | Classical non-determinism of Kähler action                                            | 10 |  |
|   |                                                          | 3.3.6                                             | p-Adic physics as physics of cognition and intentionality .                           | 10 |  |
|   | <ul><li>3.4 TGD as a generalized number theory</li></ul> |                                                   | s a generalized number theory                                                         | 11 |  |
|   |                                                          |                                                   | ical quantized Planck constant and dark matter hierarchy                              | 12 |  |
|   |                                                          | 3.5.1                                             | Dark matter as large $\hbar$ phase $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 12 |  |
|   |                                                          | 3.5.2                                             | Dark matter as a source of long ranged weak and color                                 |    |  |
|   |                                                          |                                                   | fields                                                                                | 13 |  |
|   |                                                          | 3.5.3                                             | p-Adic and dark matter hierarchies and hierarchy of mo-                               |    |  |
|   |                                                          |                                                   | ments of consciousness                                                                | 14 |  |
| 4 | Biro                                                     | l's eye                                           | of view about the topics of the book                                                  | 16 |  |

| <b>5</b> | The | contents of the book                        | 17 |
|----------|-----|---------------------------------------------|----|
|          | 5.1 | Magnetic Sensory Canvas Hypothesis          | 17 |
|          | 5.2 | Quantum model of nerve pulse                | 19 |
|          | 5.3 | Dark Matter Hierarchy and Hierarchy of EEGs | 22 |
|          | 5.4 | Quantum model of EEG and ZEG: part I        | 27 |
|          | 5.5 | Quantum model of EEG and ZEG: part II       | 30 |
|          | 5.6 | Quantum model for hearing                   | 32 |

# 1 Background

T(opological) G(cometro)D(ynamics) is one of the many attempts to find a unified description of basic interactions. The development of the basic ideas of TGD to a relatively stable form took time of about half decade [16]. The great challenge is to construct a mathematical theory around these physically very attractive ideas and I have devoted the last twenty-three years for the realization of this dream and this has resulted in seven online books [1, 2, 4, 5, 3, 6, 7] about TGD and eight online books about TGD inspired theory of consciousness and of quantum biology [10, 8, 9, 13, 11, 12, 14, 15].

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinitedimensional configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness have been for last decade of the second millenium the basic three strongly interacting threads in the tapestry of quantum TGD.

For few yeas ago the discussions with Tony Smith generated a fourth thread which deserves the name 'TGD as a generalized number theory'. The work with Riemann hypothesis made time ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the basic views about what the final form and physical content of quantum TGD might be.

The fifth thread came with the realization that by quantum classical correspondence TGD predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynamical quantized Planck constant might be necessary and certainly possible in TGD framework. The identification of hierarchy of Planck constants whose values TGD "predicts" in terms of dark matter hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus TGD Universe would be fractal in very abstract and deep sense.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics of cognitive representations. The seven online books [1, 2, 4, 5, 3, 6, 7] about TGD and eight online books about TGD inspired theory of consciousness and of quantum biology [10, 8, 9, 13, 11, 12, 14, 15] are warmly recommended to the interested reader.

# 2 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches: namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the old-fashioned string model.

#### 2.1 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation. Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is regarded as a surface in the 8-dimensional space  $H = M_{+}^{4} \times CP_{2}$ , where  $M_{+}^{4}$  denotes the interior of the future light cone of the Minkowski space (to be referred as light cone in the sequel) and  $CP_2 = SU(3)/U(2)$  is the complex projective space of two complex dimensions [17, 18, 19, 20]. The identification of the space-time as a submanifold [21, 22] of  $M^4 \times CP_2$  leads to an exact Poincare invariance and solves the conceptual difficulties related to the definition of the energy-momentum in General Relativity [Misner-Thorne-Wheeler, Logunov et al]. The actual choice  $H = M_{+}^{4} \times CP_{2}$  implies the breaking of the Poincare invariance in the cosmological scales but only at the quantum level. It soon however turned out that submanifold geometry, being considerably richer in structure than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the geometrization of the elementary particle quantum numbers is achieved. The geometry of  $CP_2$  explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The projections of the  $CP_2$  spinor connection, Killing vector fields of  $CP_2$  and of H-metric to four-surface define classical electro-weak, color gauge fields and metric in  $X^4$ .

### 2.2 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in the sense that the quantum numbers of the elementary particles reside on the boundaries. Various boundary topologies (number of handles) correspond to various fermion families so that one obtains an explanation for the known elementary particle quantum numbers. This approach leads also to a natural topological description of the particle reactions as topology changes: for instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

# 2.3 Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches seem to be mutually exclusive since the orbit of a particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically trivial macroscopic space-time of General Relativity. The unification of these approaches forces a considerable generalization of the conventional space-time concept. First, the topologically trivial 3-space of General Relativity is replaced with a "topological condensate" containing matter as particle like 3-surfaces "glued" to the topologically trivial background 3-space by connected sum operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the "topological condensate" there is "vapor phase" that is a "gas" of particle like 3-surfaces (counterpart of the "baby universies" of GRT) and the nonconservation of energy in GRT corresponds to the transfer of energy between the topological condensate and vapor phase.

# 3 The five threads in the development of quantum TGD

The development of TGD has involved four strongly interacting threads: physics as infinite-dimensional geometry; p-adic physics; TGD inspired theory of consciousness and TGD as a generalized number theory. In the following these five threads are briefly described.

## 3.1 Quantum TGD as configuration space spinor geometry

A turning point in the attempts to formulate a mathematical theory was reached after seven years from the birth of TGD. The great insight was "Do not quantize". The basic ingredients to the new approach have served as the basic philosophy for the attempt to construct Quantum TGD since then and are the following ones:

a) Quantum theory for extended particles is free(!), classical(!) field theory for a generalized Schrödinger amplitude in the configuration space CH consisting of all possible 3-surfaces in H. "All possible" means that surfaces with arbitrary many disjoint components and with arbitrary internal topology and also singular surfaces topologically intermediate between two different manifold topologies are included. Particle reactions are identified as topology changes [23, 24, 25]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay  $A \rightarrow B + C$ . Classically this corresponds to a path of configuration space leading from 1-particle sector to 2-particle sector. At quantum level this corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All coupling constants should result as predictions of the theory since no nonlinearities are introduced.

b) Configuration space is endowed with the metric and spinor structure so that one can define various metric related differential operators, say Dirac operator, appearing in the field equations of the theory.

## 3.2 p-Adic TGD

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Although the details of the calculations have varied from year to year, it was clear that p-adic physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary particle mass scales, to number theory if one assumes that primes near prime powers of two are in a physically favored position. Why this is the case, became one of the key puzzless and led to a number of arguments with a common gist: evolution is present already at the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic length scales varying to even cosmological length scales. The idea about the connection of p-adics with cognition motivated already the first attempts to understand the role of the p-adics and inspired 'Universe as Computer' vision but time was not ripe to develop this idea to anything concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive representations for real regions had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer. What is the relationship of p-adic non-determinism to the classical non-determinism of the basic field equations of TGD? Are the p-adic spacetime region genuinely p-adic or does p-adic topology only serve as an effective topology? If p-adic physics is direct image of real physics, how the mapping relating them is constructed so that it respects various symmetries? Is the basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both, how should one glue the physics in different number field together to get *The Physics*? Should one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly the p-adicization at the level of super-conformal representation is necessary for the p-adic mass calculations. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic definite integral which is a crucial element of any variational principle based formulation of the field equations. Here the frustration was not due to the lack of solution but due to the too large number of solutions to the problem, a clear symptom for the sad fact that clever inventions rather than real discoveries might be in question.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic physics growed steadily and the applications turned out to be relatively stable so that it was clear that the solution to these problems must exist. It became only gradually clear that the solution of the problems might require going down to a deeper level than that represented by reals and p-adics.

## 3.3 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between entire deterministic quantum histories rather than time=constant snapshots of single history. The new view about quantum jump forces a generalization of quantum measurement theory such that observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable outcome. This theory is developed in detail in the books [10, 8, 9, 13, 11, 12, 14, 15].

#### 3.3.1 Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum jump involves the steps

$$\Psi_i \to U\Psi_i \to \Psi_f$$

where U is informational "time development" operator, which is unitary like the S-matrix characterizing the unitary time evolution of quantum mechanics. U is however only formally analogous to Schrödinger time evolution of infinite duration although there is *no* real time evolution involved. It is not however clear whether one should regard U-matrix and S-matrix as two different things or not: U-matrix is a completely universal object characterizing the dynamics of evolution by self-organization whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field theories where it at least formally represents unitary time translation operator at the limit of an infinitely long interaction time. The S-matrix understood in the spirit of superstring models is however something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field theories implies that each quantum jump involves localization in zero modes which parameterize also the possible choices of the quantization axes. Thus the selection of the quantization axes performed by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply that the final states of quantum jump correspond to quantum superpositions of space-time surfaces which are macroscopically equivalent.

Hence the world of conscious experience looks classical. At least formally quantum jump can be interpreted also as a quantum computation in which matrix U represents unitary quantum computation which is however not identifiable as unitary translation in time direction and cannot be 'engineered'.

#### 3.3.2 The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the sequential informational 'time evolutions' U. Exactly vanishing entanglement is practically impossible in ordinary quantum mechanics and it might be that 'vanishing entanglement' in the condition for self-property should be replaced with 'subcritical entanglement'. On the other hand, if space-time decomposes into p-adic and real regions, and if entanglement between regions representing physics in different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last 'wake-up' sum up to single average experience. This means that subjective memory is identifiable as conscious, immediate short term memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also interpreted as mental images: our mental images are selves having mental images and also we represent mental images of a higher level self. A natural hypothesis is that self S experiences the experiences of its subselves as kind of abstracted experience: the experiences of subselves  $S_{ij}$ . Entanglement between selves, most naturally realized by the formation of join along boundaries bonds between cognitive or material space-time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the fusion of the mental images representing separate right and left visual fields to single visual field) and forms wholes from parts at the level of mental images.

#### 3.3.3 Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory. The assumption that localization occurs in zero modes in each quantum jump implies that the world of conscious experience looks classical. It also implies the state function reduction of the standard quantum measurement theory as the following arguments demonstrate (it took incredibly long time to realize this almost obvious fact!).

a) The standard quantum measurement theory a la von Neumann involves the interaction of brain with the measurement apparatus. If this interaction corresponds to entanglement between microscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M characterizing the reading of the measurement apparatus coded to brain state, then the reduction of this entanglement in quantum jump reproduces standard quantum measurement theory provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and correlates completely some orthonormal basis of configuration space spinor fields in non-zero modes with the values of the zero modes. The flow property guarantees that the localization is consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables (say, spin direction of the electron to its orbit in the external magnetic field).

b) Since zero modes represent classical information about the geometry of space-time surface (shape, size, classical Kähler field,...), they have interpretation as effectively classical degrees of freedom and are the TGD counterpart of the degrees of freedom M representing the reading of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes and zero modes is the TGD counterpart for the m - M entanglement. Therefore the localization in zero modes is equivalent with a quantum jump leading to a final state where the measurement apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential. Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.

Standard quantum measurement theory involves also the notion of state preparation which reduces to the notion of self measurement. Each localization in zero modes is followed by a cascade of self measurements leading to a product state. This process is obviously equivalent with the state preparation process. Self measurement is governed by the so called Negentropy Maximization Principle (NMP) stating that the information content of conscious experience is maximized. In the self measurement the density matrix of some subsystem of a given self localized in zero modes (after ordinary quantum measurement) is measured. The self measurement takes place for that subsystem of self for which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context NMP can be regarded as the variational principle defining the dynamics of cognition. In real context self measurement could be seen as a repair mechanism allowing the system to fight against quantum thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest hole first in a leaking boat).

#### 3.3.4 Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum jump as the basic step of self-organization [I1]. Quantum entanglement gives rise to the generation of long range order and the emergence of longer p-adic length scales corresponds to the emergence of larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization. Zero modes represent fundamental order

parameters and localization in zero modes implies that the sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken's classical theory of self organization applies almost as such. Spin glass analogy is a further important element: self-organization of self leads to some characteristic pattern selected by dissipation as some valley of the "energy" landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipation terms to the reversible fundamental dynamical equations derivable from an action principle can be understood as a phenomenological description replacing in a well defined sense the series of reversible quantum histories with its envelope.

#### 3.3.5 Classical non-determinism of Kähler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The huge vacuum degeneracy of the Kähler action suggests strongly that the absolute minimum space-time is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time surface decomposes into maximal deterministic regions and their temporal sequences have interpretation a space-time correlate for a sequence of quantum states defined by the initial (or final) states of quantum jumps. This is consistent with the fact that the variational principle selects preferred extremals of Kähler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as volitional non-determinism associated with our choices. Association sequences relate closely with the cognitive space-time sheets defined as space-time sheets having finite time duration and psychological time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the future light cone explains the arrow of psychological time.

#### 3.3.6 p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes into regions obeying real and p-adic topologies labelled by primes  $p = 2, 3, 5, \ldots$  p-Adic regions obey the same field equations as the real regions but are characterized by p-adic non-determinism since the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time regions are obtained

by gluing together regions for which integration constants are genuine constants. The natural interpretation of the p-adic regions is as cognitive representations of real physics. The freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and make possible for the Universe to form cognitive representations about itself. p-Adic physics space-time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic extensions among common algebraic numbers). This picture is discussed in [E1]. The application this notion at the level of the imbedding space implies that imbedding space has a book like structure with various variants of the imbedding space glued together along common rationals (algebraics). The implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and intentionality are almost completely outside the real cosmos and touch it at a discrete set of points only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing long range real physics and provides an explanation for p-adic length scale hypothesis stating that the primes  $p \simeq 2^k$ , k integer are especially interesting. It also explains the long range correlations and short term chaos characterizing intentional behavior and explains why the physical realizations of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete quantum model for how intentions are transformed to actions emerges.

The discrete real projections of p-adic space-time sheets serve also spacetime correlate for a logical thought. It is very natural to assign to p-adic pinary digits a *p*-valued logic but as such this kind of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the  $p = 2^k - n$  pinary digits represent a Boolean logic  $B^k$  with k elementary statements (the points of the k-element set in the set theoretic realization) with n taboos which are constrained to be identically true.

#### 3.4 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinitedimensional configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD. For few yeas ago the discussions with Tony Smith generated a fourth thread which deserves the name 'TGD as a generalized number theory'. It relies on the notion of number theoretic compactification stating that space-time surfaces can be regarded either as hyper-quaternionic, and thus maximally associative, 4-surfaces in  $M^8$ identifiable as space of hyper-octonions or as surfaces in  $M^4 \times CP_2$  [E2].

The discovery of the hierarchy of infinite primes and their correspondence

with a hierarchy defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics as various completions of the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic, topological and dimensional democracy would characterize the theory.

What is especially satisfying is that p-adic and real regions of the space-time surface could emerge automatically as solutions of the field equations. In the space-time regions where the solutions of field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic solution can exist for some values of the p-adic prime. The characteristic non-determinism of the padic differential equations suggests strongly that p-adic regions correspond to 'mind stuff', the regions of space-time where cognitive representations reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is probably extremely brilliant simulator of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive information about the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

## 3.5 Dynamical quantized Planck constant and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions. Hence the fact that they have all possible size scales more or less unavoidably implies that Planck constant must be quantized and have arbitrarily large values. If one accepts this then also the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

#### **3.5.1** Dark matter as large $\hbar$ phase

D. Da Rocha and Laurent Nottale [26] have proposed that Schrödinger equation with Planck constant  $\hbar$  replaced with what might be called gravitational Planck constant  $\hbar_{gr} = \frac{GmM}{v_0}$  ( $\hbar = c = 1$ ).  $v_0$  is a velocity parameter having the value  $v_0 = 144.7 \pm .7$  km/s giving  $v_0/c = 4.6 \times 10^{-4}$ . This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of  $v_0$  seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics. Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR catastrophe) problem encountered at the classical level. The resolution of the problem inspired by TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which is quantum coherent in the required time scale [D6].

Already before learning about Nottale's paper I had proposed the possibility that Planck constant is quantized [E9] and the spectrum is given in terms of logarithms of Beraha numbers: the lowest Beraha number  $B_3$  is completely exceptional in that it predicts infinite value of Planck constant. The inverse of the gravitational Planck constant could correspond a gravitational perturbation of this as  $1/\hbar_{gr} = v_0/GMm$ . The general philosophy would be that when the quantum system would become non-perturbative, a phase transition increasing the value of  $\hbar$  occurs to preserve the perturbative character and at the transition  $n = 4 \rightarrow 3$  only the small perturbative correction to  $1/\hbar(3) = 0$  remains. This would apply to QCD and to atoms with Z > 137 as well.

TGD predicts correctly the value of the parameter  $v_0$  assuming that cosmic strings and their decay remnants are responsible for the dark matter. The harmonics of  $v_0$  can be understood as corresponding to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes  $n^2$ -fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also a model for the formation of planetary system as a condensation of ordinary matter around quantum coherent dark matter emerges [D6].

#### 3.5.2 Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical electroweak gauge fields are identified as space-time correlates for massless gauge fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The identification explains chiral selection in living matter and unbroken  $U(2)_{ew}$  invariance and free color in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear physics. An attractive solution of the matter antimatter asymmetry is based on the identification of also antimatter as dark matter.

# 3.5.3 p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings additional elements to the TGD inspired theory of consciousness.

a) Macroscopic quantum coherence can be understood since a particle with a given mass can in principle appear as arbitrarily large scaled up copies (Compton length scales as  $\hbar$ ). The phase transition to this kind of phase implies that space-time sheets of particles overlap and this makes possible macroscopic quantum coherence.

b) The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated with EEG turns out to be above thermal energy at room temperature for the level of dark matter hierarchy corresponding to magnetic flux quanta of the Earth's magnetic field with the size scale of Earth and a successful quantitative model for EEG results [M3].

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several testable predictions [M3]. The applications to living matter suggests that the basic hierarchy corresponds to a hierarchy of Planck constants coming as  $\hbar(k) = \lambda^k(p)\hbar_0$ ,  $\lambda \simeq 2^{11}$  for  $p = 2^{127-1}$ , k = 0, 1, 2, ... [M3]. Also integer valued sub-harmonics and integer valued sub-harmonics of  $\lambda$  might be possible. Each p-adic length scale corresponds to this kind of hierarchy and number theoretical arguments suggest a general formula for the allowed values of Planck constant  $\lambda$  depending logarithmically on p-adic prime [C6]. Also the value of  $\hbar_0$  has spectrum characterized by Beraha numbers  $B_n = 4\cos^2(\pi/n)$ ,  $n \geq 3$ , varying by a factor in the range n > 3 [C6]. It must be however emphasized that the relation of this picture to the model of quantized gravitational Planck constant  $h_{gr}$  appearing in Nottale's model is not yet completely understood.

The general prediction is that Universe is a kind of inverted Mandelbrot fractal for which each bird's eye of view reveals new structures in long length and time scales representing scaled down copies of standard physics and their dark variants. These structures would correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per cent of matter in the universe is dark.

#### 1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly the band structure and even individual resonance bands and also generalizing the notion of EEG [M3]. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the standard dogma [L2, M3]. A particularly fascinating implication is the possibility to identify great leaps in evolution as phase transitions in which new higher level of dark matter emerges [M3]. It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That this explanation is consistent with the explanation based on spin glass degeneracy is suggested by following observations. First, the argument supporting spin glass degeneracy as an explanation of the macro-temporal quantum coherence does not involve the value of  $\hbar$  at all. Secondly, the failure of the perturbation theory assumed to lead to the increase of Planck constant and formation of macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass degeneracy.

#### 2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and hierarchy of moments of consciousness [J6, M3]. The larger the value of Planck constant, the longer the subjectively experienced duration and the average geometric duration  $T(k) \propto \lambda^k$  of the quantum jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric durations of quantum jumps scale like  $\hbar$ . Dark matter hierarchy suggests also a slight modification of the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of quantum jumps. The averaging of conscious experience over quantum jumps would occur only for sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and single moment of consciousness would be experienced as a history of events. The quantum parallel dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire life cycle could be regarded as a single quantum jump at the highest level so that consciousness would not be completely lost even during deep sleep. This would allow to understand why we seem to know directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corresponds at the highest dark matter level to single moment of consciousness. Self would experience the average over the sequence of moments of consciousness associated with each sub-self but there would be no averaging over the separate mental images of this kind, be their parallel or serial. These mental images correspond to sub-selves having shorter wake-up periods than self and would be experienced as being time ordered. Hence the digits in the phone number are experienced as separate mental images and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark

#### matter hierarchy

The simplest dimensional estimate gives for the average increment  $\tau$  of geometric time in quantum jump  $\tau \sim 10^4 \ CP_2$  times so that  $2^{127} - 1 \sim 10^{38}$  quantum jumps are experienced during secondary p-adic time scale  $T_2(k = 127) \simeq 0.1$  seconds which is the duration of physiological moment and predicted to be fundamental time scale of human consciousness [L1]. A more refined guess is that  $\tau_p = \sqrt{p\tau}$  gives the dependence of the duration of quantum jump on p-adic prime p. By multi-p-fractality predicted by TGD and explaining p-adic length scale hypothesis, one expects that at least p = 2-adic level is also always present. For the higher levels of dark matter hierarchy  $\tau_p$  is scaled up by  $\hbar/\hbar_0$ . One can understand evolutionary leaps as the emergence of higher levels at the level of individual organism making possible intentionality and memory in the time scale defined  $\tau$  [L2].

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and its evolution. For instance, EEG time scales corresponds to k = 4 level of hierarchy and a time scale of .1 seconds [J6], and EEG frequencies correspond at this level dark photon energies above the thermal threshold so that thermal noise is not a problem anymore. Various levels of dark matter hierarchy would naturally correspond to higher levels in the hierarchy of consciousness and the typical duration of life cycle would give an idea about the level in question.

The level would determine also the time span of long term memories as discussed in [M3]. k = 7 would correspond to a duration of moment of conscious of order human lifetime which suggests that k = 7 corresponds to the highest dark matter level relevant to our consciousness whereas higher levels would in general correspond to transpersonal consciousness. k = 5 would correspond to time scale of short term memories measured in minutes and k = 6 to a time scale of memories measured in days.

The emergence of these levels must have meant evolutionary leap since long term memory is also accompanied by ability to anticipate future in the same time scale. This picture would suggest that the basic difference between us and our cousins is not at the level of genome as it is usually understood but at the level of the hierarchy of magnetic bodies [L2, M3]. In fact, higher levels of dark matter hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The genomes of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes would result from the fusion of genomes of different organisms and collective levels of consciousness would express themselves via hyper-genome and make possible social rules and moral.

# 4 Bird's eye of view about the topics of the book

In this book TGD based general view about EEG is developed. A central notion is that of magnetic body. Magnetic body acts as an intentional agent using biological body as a motor instrument and sensory receptor. There is an entire hierarchy of magnetic bodies associated with various body parts and characterized by the respective p-adic length scale  $L_p = L(k)$ ,  $p \simeq 2^k$ , and the

level of dark matter hierarchy labelled by integer  $k_d \ge 0$  characterizing the value of Planck constant as  $\hbar = \lambda^{k_d} \hbar_0$ ,  $\lambda \simeq 2^{11}$ . The values of p and  $k_d$  could be seen as kind of intelligence and spiritual quotients.

Magnetic body controls the biological body and receives information from it. The hierarchy of EEGs (more generally the counterparts of EEG associated with  $Z^0$ , and W bosons and gluons) consisting of dark bosons with energies above thermal threshold by the large value of  $\hbar$ , is the central aspect of this activity.

Sensory qualia could be associated with the generalized di-electric breakdowns between sensory organ and its magnetic body behaving somewhat like a capacitor. The cyclotron phase transitions of Bose-Einstein condensates of biologically important ions generated by the dark EEG photons at the magnetic body generate magnetic somatosensory qualia identifiable as our cognitive and emotional qualia. Long ranged charge entanglement made possible by W MEs (topological light rays) are essential element of all motor control and generate exotic ionization of nuclei in turn inducing classical electric fields at space-time sheets carrying ordinary matter. These fields generate various responses such as ionic waves and nerve pulses yielding the desired physiological responses.

The plan of the book is roughly following. The chapter describing the magnetic sensory canvas hypothesis is followed by a model for nerve pulse and by three chapters devoted to EEG. A speculative chapter discussing the possible role of exotic neutrinos in hearing and cognition concludes the book.

The seven online books about TGD [1, 2, 4, 5, 3, 6, 7] and eight online books about TGD inspired theory of consciousness and quantum biology [10, 8, 9, 13, 11, 12, 14, 15] are warmly recommended for the reader willing to get overall view about what is involved.

# 5 The contents of the book

#### 5.1 Magnetic Sensory Canvas Hypothesis

There are very general objections against the idea that ultimate sensory representations are realized inside brain. For instance, any computer scientist, unless informed about materialistic dogmas, would argue that the processing of the sensory data must be separated from its representation. How this could occur if sensory and other representations are realized inside brain, is however difficult to see.

In TGD approach these objections lead to the view that the magnetic flux tube structures associated with the primary sensory organs and higher levels of central nervous system define a hierarchy of sensory and other representations outside brain with magnetic flux tubes serving as the sensory canvas to which place coding by magnetic transition frequencies generates sensory sub-selves and associates with them various sensory qualia and features by quantum entanglement. Thus brain could be much like a RAM memory containing a collection of features in random order and the ordering would be induced by the sensory map to the magnetic sensory canvas.

MEs define the sensory projections and EEG MEs correspond to our level in this hierarchy of projections. The sizes of these sensory selves are of order ME sizes (L(EEG) = c/f(EEG)) and thus or order Earth size at least. Thus TGD based view about sensory representations is a diametrical opposite of the standard view in which sensory representations are miniatures.

The construction of a more detailed model is based on the following assumptions.

- 1. Sensory qualia are at the level of primary sensory organs having their own magnetic bodies and entangled with the cognitive and symbolic representations of the perceptive field in brain in turn entangled with the points of the sensory magnetic canvas. The entanglement between primary sensory organs and brain and TGD based view about long term memory resolves the basic objections against this view, and one can understand the differences between sensory experience, imagination, dreams, and hallucinations and various strange phenomena like synesthesia, Anton's syndrome, and blind sight.
- 2. Second essential element is the mirror mechanism of long term memories. To remember something in the geometric past at temporal distance T is to look at a magnetic mirror with length L = cT/2. At quantum level quantum entanglement is involved and means sharing of mental images between recent me and the me of the geometric past (or some other self responsible for the memory representations). This requires that magnetic flux tubes involved with long term memories have astrophysical lengths with light year being the natural length unit. For magnetic fields this indeed makes sense. This picture can be applied to construct a model of long term episodal and declarative memories. The magnetic body (the "me") uses brain as a time mirror by generating a negative energy ME representing a signal propagating along magnetic flux tube to the brain and entangling magnetic body with brain. The negative energy ME is time reflected as a positive energy ME able to communicate classical information to the magnetic body possibly using p-adic cognitive code. Phase conjugate laser wave is the physical counterpart of negative energy ME.
- 3. Libet's findings about strange causal anomalies related to the passive aspects of consciousness support strongly the notion of magnetic body and lead to the conclusion that sensory experiences are geometric memories of magnetic body in time scale of .5 seconds about what happens in at the level of material body. Libet's findings about active aspects of consciousness in turn allow to conclude that motor activity is very much like active precognition and mirror image of sensory perception. A beautiful general scenario unifying sensory perception, long term memories, and motor action emerges and allows to explain phenomena like sensory rivalry difficult to understand in neuro-science framework. It must be however admitted that sensory canvas hypothesis is far from being established even in TGD

framework: one can also defend the minimal model in which personal magnetic body is responsible only for the realization of long term memories and sensory, symbolic, and cognitive representations are realized only at the level of the material body.

4. Dark matter hierarchy based on a hierarchy of increasing values of Planck constant predicts a hierarchy of generalized EEGs. The generalized EEGs make it possible for the magnetic bodies to receive sensory information from biological body and quantum control it. The resulting detailed model of ordinary EEG predicts correctly the band structure and narrow resonance bands.

#### 5.2 Quantum model of nerve pulse

The basic idea behind the model of nerve pulse is that some kind of quantum jump reduces the magnitude of membrane potential below the threshold leading to the generation of nerve pulse. Several identification of this quantum jump have been discussed during years but no really convincing option has been found. The evolution of ideas about dark matter hierarchy and associated hierarchy of Planck constants led to a breakthrough in several sectors. The assignment the predicted ranged classical weak and color gauge fields to dark matter hierarchy was the crucial step and led among other things to a model of high  $T_c$  superconductivity predicting the basic scales of cell, to a generalization of the genetic code to a hierarchy of genetic codes, and also to a generalization of EEG to a hierarchy of EEGs, ZEGs, and WEGs and of the colored variant of EEG. The newest input comes from the model of DNA as topological quantum computer and experimental findings challenging Hodgkin-Huxley model as even approximate description of the situation.

#### 1. New view about nerve pulse generation

The model of nerve pulse has developed through several tortuous twists reflecting the development of the basic ideas of TGD inspired theory of consciousness and of bio-systems as macroscopic quantum systems. The chapters about EEG and ZEG provide a necessary background for the model of nerve pulse. The chapters [?, ?] written before dark matter revolution provide a detailed discussion of basic aspects of EEG. The newest chapter [M3] related to EEG provides a very general vision about the hierarchy of EEGs based on dark matter hierarchy and about its generalization to ZEG and even WEG (Z and W denote for dark  $Z^0$  and W boson fields with interaction range which can be arbitrary long at higher levels of dark matter hierarchy). This model derives from the model of bio-superconductivity as quantum critical high  $T_c$  super-conductivity [?, ?, ?].

The basic hypothesis has been that quantum jump takes the resting potential below the threshold for the generation of nerve pulse. One can imagine several manners for how this could happen. Quite recently I learned that nerve pulse propagation seems to be an adiabatic process and thus does not dissipate: the authors propose that 2-D acoustic soliton is in question. Adiabaticity is what one expects if the ionic currents are dark currents (large  $\hbar$  and low dissipation) or even supra currents. Furthermore, Josephson currents are oscillatory so that no pumping is needed. Combining this input with the model of DNA as topological quantum computer (tqc) leads to a rather precise model for the generation of nerve pulse.

- 1. The system would consist of two superconductors- microtubule space-time sheet and the space-time sheet in cell exterior- connected by Josephson junctions represented by magnetic flux tubes defining also braiding in the model of tqc. The phase difference between two super-conductors would obey Sine-Gordon equation allowing both standing and propagating solitonic solutions. A sequence of rotating gravitational penduli coupled to each other would be the mechanical analog for the system. Soliton sequences having as a mechanical analog penduli rotating with constant velocity but with a constant phase difference between them would generate moving kHz synchronous oscillation. Also moving oscillations in EEG range can be considered and would require larger value of Planck constant in accordance with vision about evolution as gradual increase of Planck constant.
- 2. During nerve pulse one pendulum would be kicked so that it would start to oscillate instead of rotating and this oscillation pattern would move with the velocity of kHz soliton sequence. The velocity of kHz wave and nerve pulse is fixed by periodic boundary conditions at the ends of the axon implying that the time spent by the nerve pulse in traveling along axon is always a multiple of the same unit: this implies kHz synchrony. The model predicts the value of Planck constant for the magnetic flux tubes associated with Josephson junctions and the predicted force caused by the ionic Josephson currents is of correct order of magnitude for reasonable values of the densities of ions. The model predicts kHz em radiation as Josephson radiation generated by moving soliton sequences. EEG would also correspond to Josephson radiation: it could be generated either by moving or standing soliton sequences (latter are naturally assignable to neuronal cell bodies for which  $\hbar$  should be correspondingly larger): synchrony is predicted also now.
- 3. The previous view about microtubules in nerve pulse conduction can be sharpened. Microtubular electric field (always in the same direction) could explain why kHz and EEG waves and nerve pulse propagate always in same direction and might also feed energy to system so that solitonic velocity could be interpreted as drift velocity. This also inspires a generalization of the model of DNA as tqc sine also microtubule-cell membrane systems are good candidates for performers of tqc. Cell replication during which DNA is out of game seems to require this and microtubule-cell membrane

tqc would represent higher level tqc distinguishing between multi-cellulars and mono-cellulars.

4. New physics would enter in several manners. Ions should form Bose-Einstein cyclotron condensates. The new nuclear physics predicted by TGD predicts that ordinary fermionic ions (such as  $K^+$ , Na<sup>+</sup>, Cl<sup>-</sup>) have bosonic chemical equivalents with slightly differing mass number. Anomalies of nuclear physics and cold fusion provide experimental support for the predicted new nuclear physics. Electronic supra current pulse from microtubules could induce the kick of pendulum inducing nerve pulse and induce a small heating and expansion of the axon. The return flux of ionic Josephson currents would induce convective cooling of the axonal membrane. A small transfer of small positive charge into the inner lipid layer could induce electronic supra current by attractive Coulomb interaction. The exchange of exotic W bosons which are scaled up variants of ordinary  $W^{\pm}$  bosons is a natural manner to achieve this if new nuclear physics is indeed present.

#### 2. The function of neural transmitters

TGD leads to a general view about the functions of membrane oscillations, nerve pulse and neural transmitters. Electromagnetic membrane oscillations induced by  $Z^0$  MEs provide a realization of the memetic code as a fundamental cognitive code. The binding of various information molecules to the corresponding receptors gives rise to neuronal qualia analogous to tastes and odors but providing information about external world whereas ordinary receptors give information about nearby environment. At our level of hierarchy these qualia probably correspond to emotions in consistency with the finding that neurotransmitters can be identified as information molecules. Neurotransmitters might be also seen as conscious links in quantum web. The view that inhibition actually requires active energy feed and that excitation occurs automatically in the absence of the energy feed and induces entanglement with environment, is defended. This view conforms with Huxley's vision about brain as a filter inhibiting conscious experiences.

#### 3. Empirical evidence for axonal super-conductivity

A p-adic hierarchy of super-conductivities is the basic prediction of TGD inspired model of living matter. The many-sheeted model of the effective electronic super-conductivity explains at quantitative level the findings of Hafedh Abdelmelek and his group about the reduction of the axonal resistivity in the range of physiological temperatures. Although the original model is probably non-realistic the observations are consistent with the recent views about nerve pulse.

#### 4. Microtubular level

The view about what happens at the micro-tubular level during synchronous neuronal firing relies on a many-sheeted model for sol-gel phase transitions as conscious bits and on the seesaw mechanism of remote metabolism according to which sol-gel transitions induces gel-sol transitions elsewhere in the cell and vice versa. Micro-tubular surfaces can be seen as analogs of cortical sensory and motor areas providing kind of conscious log files about sensory and motor history of the cell in terms of conformational transitions of tubulin dimers representing conscious bits.

What happens at the micro-tubular level during the nerve pulse, how gel phase differs from sol phase, and what occurs in sol-gel transition, belong to the principal challenges for quantum theories of consciousness. Charge entanglement associated with various bosonic ions allows to tackle these questions. The Bose-Einstein condensates of hydrogen atoms at tubular k = 139 spacetime sheets form a bundle behaving like a liquid crystal identifiable as the gel phase. Positive and negative energy IR photons at energy of .1 eV belong to the predicted fractal hierarchy of metabolic currencies, and allow to control the stability of this B-E condensate so that a precisely targeted control of the cellular state by local sol-gel transitions becomes possible. Albrecht-Buehler has demonstrated that photons with this energy have a maximal effect on cells.

Negative energy MEs are especially important: they make possible intentional action at the micro-tubular level, they are crucial for the understanding of the micro-temporal quantum coherence, and have also inspired the notions of remote metabolism and quantum credit card. The newest discovery along this line is what might be called seesaw mechanism of energy metabolism. Seesaw mechanism minimizes dissipative losses and allows to understand how microtubular surfaces provide dynamical records for the cellular sol-gel transitions, and thus define fundamental micro-tubular representation of declarative long term memories. Also the notion of micro-tubuli as quantum antennae becomes precisely defined.

The model of DNA as topological quantum computer brings in a new element. Microtubule-axonal membrane system could perform topological quantum computation just as DNA-membrane (nuclear and perhaps also cell membrane) system has been proposed to do. The braiding of the magnetic flux tubes connecting microtubules to axon would define tqc programs and also provide a representations for sensory input from sensory organs in time scale shorter than millisecond if one assumes that gel-sol-gel transition of microtubule accompanies the nerve pulse. Whether one it one say that nerve pulse is initiated at microtubular or axonal level or by both collectively is not clear since the magnetic flux tubes connecting these two systems make them to act like single coherent whole.

## 5.3 Dark Matter Hierarchy and Hierarchy of EEGs

The model for EEG and ZEG follows neatly from the general model of high  $T_c$  superconductivity. A fractal hierarchy of EEGs and ZEGs is predicted labelled by p-adic length scales and an integer  $k_d$  characterizing the value of  $\hbar$  at various levels of dark matter hierarchy. To make the representation self-contained this model is discussed in detail before proceeding to the models of EEG and ZEG.

#### 1. General mechanisms of bio-superconductivity

The many-sheeted space-time concept provides a very general mechanism of superconductivity based on the 'dropping' of charged particles from atomic space-time sheets to larger space-time sheets. The possibility of large  $\hbar$  quantum coherent phases makes the assumption about thermal isolation between spacetime sheets un-necessary. At larger space-time sheet the interactions of the charged particles with classical em fields generated by various wormhole contacts feeding gauge fluxes to and from the space-time sheet in question give rise to the necessary gap energy. The simplest model for Cooper pair is space-time sheet containing charged particles having attractive Coulombic interaction with the quarks and antiquarks associated with the throats of the wormhole contacts.

A crucial element is quantum criticality predicting that new kind of superconductivity, "boundary superconductivity", appears at the fluctuating boundaries of competing ordinary and large  $\hbar$  phases for nuclei besides large  $\hbar$  variant of ordinary superconductivity in the interior. The Cooper pairs of interior and boundary supra currents are different with interior Cooper pairs being BCS type. These two superconducting phases compete in certain narrow interval around critical temperature for which body temperature of endotherms is a good candidate in the case of living matter. Also high  $T_c$  superfluidity of bosonic atoms dropped to space-time sheets of electronic Cooper pairs becomes possible besides ionic super conductivity. Even dark neutrino superconductivity can be considered below the weak length scale of scaled down weak bosons.

Magnetic and  $Z^0$  magnetic flux tubes and sheets are especially interesting candidates for supra current carries. In this case the Cooper pairs must have spin one and this is indeed possible for wormholy Cooper pairs. The fact that the critical magnetic ( $Z^0$  magnetic) fields can be very weak or large values of  $\hbar$  is in accordance with the idea that various almost topological quantum numbers characterizing induced magnetic fields provide a storage mechanism of bio-information.

This mechanism is extremely general and works for electrons, protons, ions, charged molecules and even exotic neutrinos and an entire zoo of high  $T_c$  bio-superconductors, super-fluids and Bose-Einstein condensates is predicted. Of course, there are restrictions due to the thermal stability it room temperature and it seems that only electron, neutrino, and proton Cooper pairs are possible at room temperature besides Bose-Einstein condensates of all bosonic ions and their exotic counterparts resulting when some nuclear color bonds become charged.

# 2. Bose-Einstein condensates at magnetic flux quanta in astrophysical length scales

The new model for the topological condensation at magnetic flux quanta of magnetic field of .2 Gauss which explains the findings of Blackman and others (Earth's magnetic field has nominal value .5 Gauss) is based on the dark matter hierarchy with levels characterized by the value of  $\hbar(k_d) = \lambda^{k_d} \hbar_0$ ,  $\lambda \simeq 2^{11}$ .

1. There are several levels of dynamics. In topological condensation the

internal dynamics of ions is unaffected and  $\hbar$  has the ordinary value. The formation of Cooper pairs involves dynamics at  $k_d = 1$  level of dark matter hierarchy. Also the dynamics of ionic Cooper pairs remains unaffected in the topological condensation to magnetic flux quanta obeying  $k_d > 1$  dynamics.

- 2. Cyclotron energies scale as as  $\lambda^{k_d}$  so that for a sufficiently high value of k thermal stability of cyclotron states at room temperature is achieved. Spin interaction energy  $\mu \cdot B \propto S \cdot B$  scales as  $1/\hbar$  since four-momentum and angular momentum are by Poincare symmetry invariant under the scaling of  $\hbar$ . Hence spin interaction energy has the ordinary value. Unless thermal isolation is assumed, spin degrees of freedom are thermalized, and only cyclotron degrees of freedom can be quantum coherent. This is a testable prediction distinguishing between the new and old model.
- 3. If the flux quanta of B = .2 Gauss correspond to  $k_d = 4$  level of dark matter hierarchy, cyclotron energies  $E = (\hbar/2\pi) \times ZeB/Am_p$  are scaled up by a factor  $\lambda^4 \simeq 2^{44}$  from their ordinary values and are above thermal energy at room temperature for  $A \leq 233Z$ , where Z is the charge of the ion. Even for Z = 1 this includes all stable nuclei. Bose-Einstein condensates of bosonic ions are thus possible at room temperatures at Earth's surface. Cooper pairs of fermionic ions are possible only for  $A \leq 4$  leaving in practice only protons into consideration. Also bosonic molecular ions can suffer BE condensation.

#### 3. Fractal hierarchy of magnetic flux sheets

The notion of magnetic body is central in the TGD inspired theory of living matter. Every system possesses magnetic body and there are strong reasons to believe that the magnetic body associated with human body is of order Earth size and that there could be hierarchy of these bodies with even much larger sizes. Therefore the question arises what distinguishes between the magnetic bodies of Earth and human body. The quantization of magnetic flux suggests an answer to this question.

There are several manners to achieve quantization of magnetic flux with dynamical  $\hbar$ . From the point of view of EEG and ZEG especially interesting are flux flux sheets which have thickness  $(5/\sqrt{2}) \times L(169)/\lambda = 8.8$  nm carrying magnetic field having strength B = .2 Gauss explaining the findings of Blackman and others. These flux sheets are slightly thinner than the 10 nm thick cell membrane and total transversal length  $5L(168 + 5 \times 22) = 5L(256) = 5.7 \times 10^8$  km from flux quantization at  $k_d = 4$  level of dark matter hierarchy necessary in order that the energies associated with cyclotron frequencies are above thermal threshold. Strongly folded flux sheets of this thickness might be associated with living matter and connect their DNAs to single coherent structure.

Suppose that the magnetic flux flows in head to tail direction so that the magnetic flux arrives to the human body through a layer of cortical neurons. Assume that the flux sheets traverse through the uppermost layer of neurons

and also lower layers and that DNA of each neuronal nuclei define a transversal sections organized along flux sheet like text lines of a book page. The total length of DNA in single human cell is about one meter. It seem that single brain cannot provide the needed total length of DNA if DNA dominates the contribution: this if of course not at all necessarily. Even for  $k_d < 4$  levels magnetic flux sheets could traverse nuclei belonging to different organisms.

This leads to the notion of super- and hyper genes. Super genes consist of genes in different cell nuclei arranged to threads along magnetic flux sheets like text lines on the page of book whereas hyper genes traverse through genomes of different organisms. Super and hyper genes provide an enormous representative capacity and together with the dark matter hierarchy allows to resolve the paradox created by the observation that human genome does not differ appreciably in size from that of wheat.

#### 4. Fractal hierarchy of EEGs and ZEGs

There are three contributions to EEG besides neural noise: Schumann frequencies, cyclotron frequencies, and the frequencies associated with Josephson junctions determined by the sum of the constant voltage and voltage perturbation determined by the superposition of cyclotron frequencies. Cyclotron contribution can be interpreted as a control signal from a magnetic body in question labelled by  $k_d$  and affects both the ions at the flux sheets traversing DNA and the Josephson junction. The coherent state of photons generated by Josephson current corresponds to a reaction to this signal received by the magnetic body as a feedback. Schumann frequencies can be assigned to the control by magnetic body of Earth and correlate with the collective aspects of consciousness.

The analysis of the Josephson current leads to the conclusion that the frequencies in the coherent state of photons are in general sums and differences of Josephson frequency and harmonics of cyclotron frequencies. For small amplitudes this implies that alpha band to which the cyclotron frequencies most biologically important bosonic ions corresponds has as satellites theta and beta bands. Higher harmonics correspond to gamma and higher bands having also satellites. For large amplitudes EEG becomes chaotic which is indeed the property of beta band during say intense concentration or anxiety. The findings of Nunez about narrow 1-2 Hz wide bands at 3,5,7 Hz and 13,15,17 Hz confirm with the prediction of satellite bands and fix the Josephson frequency to 5 Hz. This picture explains the general characteristics of EEG in wake-up state qualitatively and quantitatively.

In order to understand the characteristics during various stages of deep sleep one must assume that the cyclotron frequency scale of ions is scaled down by a factor of 1/2. One explanation is that right *resp*. left brain hemisphere corresponds to Z = 2 resp. Z = 1 quantization condition  $Z \int BdS = n\hbar$  for the magnetic flux. Z = 2 case allows only doubly charged bosonic ions at magnetic flux sheets. Z = 1 case also also singly charged ions be their bosons or fermions and for this option magnetic field is scaled down by a factor of 1/2. The alternative explanation is that during sleep only Bose-Einstein condensates of singly charged exotic ions resulting when color bond inside nucleus becomes charged are present. This reduces the scale of cyclotron frequencies by a factor 1/2 and leaves only theta and delta bands. During stage 4 sleep only only DNA cyclotron frequencies in delta band are around 1 Hz and just above the thermal threshold are predicted to be present. For  $k_d = 3$  and magnetic field scaled up by  $\lambda$  and flux tube area scaled down by  $\lambda^{-2}$  DNA frequencies are scaled up to kHz for Z = 2 flux quantization and might define neuronal synchronization frequencies.

The generalization of the model for EEG hierarchy to the case of ZEG is straightforward and cyclotron frequency spectrum is essentially the same.  $Z^0$ ions are obtained when nuclear color bonds become charged and the combination of ordinary and exotic ionization can produce also em neutral  $Z^0$  ions. Any atom, almost always boson, has an exotically charged counterpart with same statistics so that very rich spectrum of Bose-Einstein condensates results.

#### 5. The effects of ELF em fields on brain

The experimental data about the effects of ELF em fields at cyclotron frequencies of various ions in endogenous magnetic field B = .2 Gauss on vertebrate brains provide a test bench for the fractal hierarchy of EEGs. As a matter fact, it was the attempt to explain these effects, which eventually led to the discovery of the fractal hierarchy of EEGs and ZEGs.

The reported effects occur for harmonics of cyclotron frequencies of biologically important ions. They occur only in amplitude windows. The first one is around  $10^{-7}$  V/m and second corresponds to the range 1 - 10 V/m: the amplitudes of EEG waves are in the range 5-10 V/m. The effects are present only in the temperature interval 36-37 C.

The temperature interval has interpretation in terms of quantum criticality of high  $T_c$  superconductivity (both interior and boundary super currents are possible in this interval). Amplitude windows correspond to resonant EEG bands if the voltage perturbations contribute to the voltages over Josephson junctions and are thus coded to EEG. That the effects occur only for cyclotron frequencies and in the amplitude windows can be understood if there is AND gate involved. The voltage signal affects the interior of the cell nucleus opening communication line to the magnetic body if a harmonic of cyclotron frequency is in question. The signal affects also the Josephson junction which sends a signal to magnetic body if the voltage of the perturbation is large enough and corresponds to a frequency in the resonance band of EEG. The response of the magnetic body affects nucleus only if the communication line is open. This AND gate eliminates very effectively the effects of neural noise.

#### 6. EEG, ZEG, and consciousness

The interpretation of cyclotron phase transitions from the point of view of conscious experience is discussed. Cyclotron frequencies are ideal for communication, control, and coding purposes. One can also ask whether cyclotron transitions correspond to some sensory qualia. "General feeling of existence" possibly accompanying all sensory qualia is one possible identification for the quale involved. Also the possibility that cyclotron phase transitions could serve as quantum correlates for tastes and odors is discussed.

#### 5.4 Quantum model of EEG and ZEG: part I

The basic philosophy behind the attempts to understand EEG is the view about personal magnetic body as an intentional agent receiving information from brain and body both by sharing of mental images and by classical communications by time mirror mechanism. Information can be received in the similar manner also by other magnetic bodies, say that of magnetic Mother Gaia.

The vision about dark matter hierarchy and p-adic length scale hierarchy leads to the conclusion that there is a wide variety of EEG and ZEG MEs involved differing by p-adic scalings and by the scalings of Planck constant. One can make guesses about the functions of various MEs only if some general vision about sensory perception, motor action, and memory is available.

- 1. Overall view
- 1. Magnetic bodies forming a hierarchy are the fundamental volitional agents transforming intentions to actions. Intentions are represented by p-adic MEs transformed to negative energy MEs representing the desire about particular activity communicated to the lower level magnetic bodies in the geometric past and eventually to the material body. Each negative energy ME in the cascade represents a desire to realize some submodule in motor program. Eventually the desired action is generated in terms of neural communications and of positive energy MEs both representing classical communications to the geometric future. The desire in question could be a desire to perform a particular motor action, a desire to direct attention or select among sensory percepts (binocular rivalry is the standard example), or a desire to remember something. Sensory perception, motor action, and memory would thus be based on essentially the same basic mechanism.
- 2. Sensory representations are realized at the magnetic bodies associated with the sensory organs and sensory mental images associated with the primary sensory organs are shared with the personal magnetic body by negative energy em MEs. Brain constructs only symbolic representations, writes the sensory music to notes. The mental images defined by these representations can be shared by personal magnetic body or magnetic bodies associated with the sensory organs in a similar manner by quantum entanglement and charge entanglement by W MEs provides a good candidate in this respect. The selective entanglement by negative energy MEs allows to understand the active aspects of sensory experience involving direction of attention and selection between percepts at various levels.
- 3. The cyclotron radiation and Josephson radiation from biological body induces cyclotron phase transitions of dark ions at the magnetic body and

generates higher level sensory experiences. The most plausible interpretation of these qualia is as emotional and cognitive qualia.

#### 2. Basic contributions to EEG and ZEG

There are three fundamental contributions to EEG (or hierarchy of EEGs) besides the neuronal noise. This picture applies more or less as such also to ZEG.

1. Schumann resonances whose interpretation should be clear.

These frequencies do not depend on magnetic field strengths assignable with magnetic flux sheets and characterize Earth's magnetic field and collective aspects of consciousness.

2. Cyclotron frequencies generated in cyclotron transitions of dark ions. Dark cyclotron photons result naturally in the dropping of dark ions to excited cyclotron states at dark magnetic flux sheets. This assumption explains the findings of the pioneers of bio-electromagnetism. A similar mechanism is suggested to work at the gene level and perhaps also in the intermediate length scales and the experimental findings of Gariaev support this picture, in particular scaled up version of the band structure seems to be present at radio frequencies.

The dropping ions would liberate part of their zero point kinetic energy as a metabolic energy: note however that dark photon cyclotron frequencies correspond to energies above thermal threshold. The generation of EEG at cyclotron frequencies would be a side product of the control actions of the magnetic body inducing metabolic activities and would be a correlate for the motor control by the magnetic body. These frequencies can be classified to those associated with bosonic and fermionic ions respectively. The transitions of Bose-Einstein condensates of bosonic ions are of special interest. The scale of these frequencies could be be subject to homeostatic regulation which is local and can vary even inside genes of a given nucleus.

3. The frequencies generated by Josephson currents as coherent photons. The analysis of the Josephson current leads to the conclusion that the frequencies in the coherent state of photons are in general sums and differences of Josephson frequency  $f_J = 5$  Hz and harmonics of cyclotron frequencies. For small amplitudes this implies that alpha band to which the cyclotron frequencies most biologically important bosonic ions correspond, has as satellites theta and beta bands. Higher harmonics correspond to gamma and higher bands having also satellites. For large amplitudes EEG becomes chaotic which is indeed the property of beta band during say intense concentration or anxiety. The findings of Nunez about narrow 1-2 Hz wide bands at 3,5,7 Hz and 13,15,17 Hz confirm with the prediction of satellite bands and fix the Josephson frequency to 5 Hz. This picture explains the general characteristics of EEG in wake-up state qualitatively and quantitatively.

4. In order to understand the characteristics during various stages of deep sleep one must assume that the cyclotron frequency scale of ions is scaled down by a factor of 1/2. One explanation is that right *resp.* left brain hemisphere corresponds to Z = 2 resp. Z = 1 quantization condition  $Z \int BdS = n\hbar$  for the magnetic flux. Z = 2 case allows only doubly charged bosonic ions at magnetic flux sheets. Z = 1 case also also singly charged ions be their bosons or fermions and for this option magnetic field is scaled down by a factor of 1/2. The alternative explanation is that during sleep only Bose-Einstein condensates of singly charged are present. This reduces the scale of cyclotron frequencies by a factor 1/2 and leaves only theta and delta bands.

During stage 4 sleep only only DNA cyclotron frequencies in delta band are around 1 Hz and just above the thermal threshold are predicted to be present. For  $k_{em} = 3$  and magnetic field scaled up by  $\lambda$  and flux tube area scaled down by  $\lambda^{-2}$  DNA frequencies are scaled up to kHz for Z = 2 flux quantization and might define neuronal synchronization frequencies.

#### 3. Emotions and cognition as sensory qualia of magnetic body

Cyclotron transitions seem to correspond to sensory qualia of magnetic body whereas ordinary sensory qualia are assignable to sensory organs. The identification of emotions and cognition as sensory qualia associated with the magnetic bodies at various levels of dark matter hierarchy seems to be the most appropriate one, and leads to a detailed view about various aspects of music experience giving justification for the music metaphor.

#### 4. Right brain sings and left brain talks

Right brain signs and left brain talks is a good metaphoric characterization of brain hemispheres. This metaphor also characterizes the difference between emotional and cognitive representations, and leads to a concrete idea about how the presentations defined by Josephson radiation from right and left brain hemispheres differ. Speech like representations identifiable as cognitive representations can be assigned with the left magnetic body and music like cognitive representations identifiable as emotions with the right magnetic body.

These representations are local representations at the level of magnetic body and correspond to slow variations of the membrane resting potential determining the Josephson frequency of the Josephson junction determining ordinary EEG and its generalizations. Speech like variations correspond to characteristic temporal patterns for the modification of membrane voltage lasting some time interval and define analogs of phonemes. Music like variations are constant shifts of membrane voltage and are coded to a variation of the pitch of the Josephson frequency. The deviations from the standard value of the resting potential are analogous to musical notes. The rhythm defined by the durational patterns of the notes is second essential element of the EEG music. Miniature- and micro-potentials are natural candidates for the deviations of the resting voltage determining these representations.

#### 5. p-Adic cognitive codes

The conventional view that the information content of conscious experience is determined completely by rate coding from nerve pulse patterns does not seem plausible in TGD framework. Indeed, p-adic cognitive codes define an entire hierarchy of binary codes associated with the p-adic frequencies and frequency coding would apply only to the average intensity of the sensory input.

The hypothesis is that the primary and also n-ary p-adic frequencies associated with the primes  $p \simeq 2^k$ , k prime or power of prime, define a hierarchy cognitive codes such that the number of the bits of the codeword is k. These codes, which can be regarded as special case of music like representations of Josephson radiation at magnetic body, define the phoneme like basic units of speech like representations as modulation patterns of EEG frequency reducible to corresponding modulation patterns for membrane resting potential.

### 5.5 Quantum model of EEG and ZEG: part II

In the previous chapter the overall TGD based view about EEG was discussed. According to this view, the basic function of EEG is to induce cyclotron phase transitions at the magnetic body and thus to produce what might be called higher level sensory qualia identified as emotions and cognitions. In this chapter the relationship between EEG and nerve pulse patterns is discussed in TGD framework.

The relationship between nerve pulse patterns and EEG (also ZEG) is one of the basic challenges of the theory. The question is whether nerve pulse patterns could give rise to EEG patterns and vice versa, and what could be the underlying mechanisms. The deep difference between TGD and the conventional neuroscience is the presence of the hierarchy of magnetic bodies, cyclotron transitions, and MEs. This makes possible to consider alternatives for the identification of EEG resonance frequencies as resonance frequencies of nerve circuits.

Nerve pulses generate EEG MEs and the frequency of the nerve pulses determines the rate at which EEG MEs are generated rather than the frequency of EEG MEs. Pendulum metaphor suggests how spike patterns amplify EEG waves at frequencies, which appear as resonances in the autocorrelation function of the spike sequence: when the pendulum is kicked at correct half of its period its oscillation frequency remains unchanged but amplitude and phase suffer discontinuous changes. The EEG waves generated by subsequent nerve pulses tend to interfere constructively resulting in amplification if the EEG frequency corresponds to a resonance frequency of the spike autocorrelation function.

1. Generalization of the model for sensory receptor and new view about hearing

The relationship between nerve pulse patterns and EEG (also ZEG) is one of the basic challenges of the theory. The question is whether nerve pulse patterns could give rise to EEG patterns and vice versa, and what could be the underlying mechanisms. In TGD framework on ecan consider alternatives for the identification of EEG resonance frequencies as resonance frequencies of nerve circuits and dark matter hierarchy challenges the earlier speculative TGD inspired models for sensory qualia and sensory organ. An updating of the capacitor model of the sensory receptor by replacing the capacitor with Josephson junctions between sensory organ and its magnetic body must be considered. The question arises whether sensory organs define not only sensory, but also corresponding cognitive and emotional representations. The fact that nerve pulses tend to destroy the temporal coherence of cognitive and emotional representations encourages the identification of glial cells and their magnetic bodies as carriers of higher level cognitive and emotional representations. The model of hearing leads to further ideas. For instance, the transformation of the sensory input to signals propagating along axonal microtubuli could make possible to feed sensory input into brain and possibly back to sensory organs at least in the case of vision and hearing.

#### 2. Features

Walter Freeman has identified spatially amplitude modulated synchronous but non-periodic EEG patterns serving as correlates for conscious percepts. The identification as MEs is possible and the spectrum of durations for the synchronous time patterns encourages the interpretation of these patterns as an electromagnetic realization of genetic code words. A compression of memetic code words defined by the nerve pulse patterns giving rise to abstraction and classification would be in question. The representation would be achieved by the amplitude modulation of the alpha waves by higher harmonics of alpha frequencies. In the case of hearing the contraction seems to be un-necessary and memetic code could perhaps be realized also at the level of features. This would explain the completely exceptional role of the language in cognition.

#### 3. Synchronization

Synchronization in and between various cortical areas is known to occur with millisecond precision. Also disjoint brain regions can be in synchrony. This is difficult to understand without synchronizing agent oscillating at kHz frequency. In TGD framework magnetic body is the natural agent inducing the synchrony and MEs could induce the synchronization. Synchronization would naturally occur at the frequency corresponding to a duration of the bit of the memetic code.

#### 4. Stochastic resonance

Concerning the mapping of EEG frequencies to nerve pulse patterns, stochastic resonance promotes itself as a basic mechanism. In bistable systems stochastic resonance allows to amplify very weak periodic signals by utilizing white noise. Stochastic resonance is known to be relevant also at the neuronal level as demonstrated by the autocorrelation functions for spike sequences exhibiting peaks at the harmonics of the signal frequency. Neuron is however far from being bistable system, and this raises the question whether bi-stability might be present at some deeper quantal level.

#### 5. Temporal codings

The conventional view that the information content of conscious experience is determined completely by rate coding from nerve pulse patterns does not seem plausible in TGD framework. Indeed, p-adic cognitive codes define an entire hierarchy of binary codes associated with the p-adic frequencies and frequency coding would apply only to the average intensity of the sensory input. For high stimulus intensities the duration of the bit of the p-adic cognitive codeword tends to become shorter. This is comparable to the increase of the speech rate during a high state of arousal, and conforms with the observed shift of EEG towards higher frequencies in this kind of situation. There is a lot of experimental evidence supporting the existence of various kinds of temporal codings, and these codings are discussed in TGD framework.

### 5.6 Quantum model for hearing

The statistical physics vision for qualia inspires the working hypothesis that quantum number increments determine qualia independently of the context (other quantum numbers). This hypothesis; the fact that hearing is frequency and time sense; and the observation that energy is conjugate to time together inspire the idea that energy increment determines some essential sub-quale of the hearing sensation common to all sensory experiences. Hearing would thus involve the time-like counterpart of force sense and the gradient of the total energy of non-f with respect to subjective time would be the physical variable sensed.

The universal character of energy (or rather power–) quale need not lead to paradoxes. The frequency range involved with hearing is at least three orders of magnitude wider than the EEG frequency range associated with other sensory inputs. Thus the contribution of the other senses to the energy aspect of the auditory sensation might be just a very low intensity noise. Hearing could be seen as a sense specialized to the energy and time aspects of sensation. This hypothesis might well be testable, for instance, by artificially inducing cortical deafness and by finding whether some aspect of hearing is still experienced. Note that neutrino spin flip is additional aspect of hearing in the model to be discussed, and might give the essential contribution to what it feels to hear.

1. Generalization of the model for sensory receptor and new view about hearing

The relationship between nerve pulse patterns and EEG (also ZEG) is one of the basic challenges of the theory. The question is whether nerve pulse patterns could give rise to EEG patterns and vice versa, and what could be the underlying mechanisms. In TGD framework one can consider alternatives for the identification of EEG resonance frequencies as resonance frequencies of nerve circuits and dark matter hierarchy challenges the earlier speculative TGD inspired models for sensory qualia and sensory organ. An updating of the capacitor model of the sensory receptor by replacing the capacitor with Josephson junctions between sensory organ and its magnetic body must be considered. The question arises whether sensory organs define not only sensory, but also corresponding cognitive and emotional representations. The fact that nerve pulses tend to destroy the temporal coherence of cognitive and emotional representations encourages the identification of glial cells and their magnetic bodies as carriers of higher level cognitive and emotional representations. The model of hearing leads to further ideas. For instance, the transformation of the sensory input to signals propagating along axonal microtubuli could make possible to feed sensory input into brain and possibly back to sensory organs at least in the case of vision and hearing.

#### 2. Possible roles of neutrinos in hearing

One can imagine several roles for exotic neutrinos in TGD inspired theory of consciousness and it is good to provide an overall summary first.

- 1. Dark matter hierarchy allows to consider cognitive and emotional representations based on cyclotron phase transitions for Cooper pairs of dark neutrinos at  $Z^0$  magnetic flux quanta.
- 2. The notion of cognitive neutrino pair represents genuinely many-sheeted physics and is the key element of the original quantum model for hearing. The neutrino and antineutrino of the pair correspond to light-like causal horizons defining the throats of a  $CP_2$  sized wormhole contact. In condensed matter the pair could have nearly vanishing total energy. Quite generally, many fermion states of the Universe, which have vanishing net fermion numbers, have interpretation as quantum superpositions of Boolean statements with the presence/absence of fermion coding for 1/0. Cognitive neutrino pairs would be a particular example of this representation and naturally related to logical aspects of cognition.

In the basic variant of the model the frequency increment of the cyclotron transition of exotic neutrino involving also spin flip codes for the pitch of the sound. The basic prediction is that several cognitive (phoneme based) and emotional (pitch based) representations of the auditory input corresponding to various levels of the dark matter hierarchy are possible. Also cognitive neutrino pairs could define this kind of representation and since a rather low level of dark matter hierarchy is in question it is possible that this particular representation does not correspond to the representation of pitch at our level of the dark matter hierarchy.

3. There are two models for memetic codons in terms of temporal sequences of cognitive neutrino pairs. In the first model the existence or nonexistence of cognitive neutrino pair (more precisely, the existence of a topological sum contact connecting the neutrino and antineutrino at parallel space-time sheets) in this sequence codes for a bit. The generation of a topological sum contact between  $CP_2$  type extremals representing neutrino and antineutrino at parallel space-time sheets would transform 0 to 1. In the second variant of the model spin direction for the cognitive neutrino codes for a bit. In this case wormhole contact must carry spin one and consist of a left handed neutrino and its antineutrino. In this case  $Z^0$ magnetic spin-spin interaction is expected to correlate the spin directions tightly and favor parallel spins so that the system behaves like spin one object and both spins flip in the  $Z^0$  magnetic field residing at either spacetime sheet. Also Coulomb interaction between neutrino and antineutrino at light-like wormhole throats contributes to the binding energy. The long ranged  $Z^0$  Coulombic interaction of neutrino with dark matter, say dark protons, can induce large Coulombic binding energy and further reduce the mass of cognitive neutrino pair and even change the sign of energy so that cognitive neutrino pairs could be generated spontaneously.

#### 3. Cognitive codes and cognitive neutrino pairs

This conceptual framework leaves a lot of room for detailed models. Perhaps the most realistic view inspired by the general model of cognition and by the general vision about dark matter is that the memetic codon is represented as  $Z^0$  magnetic body as quantum state at  $\delta H_{\pm} = \delta M_{\pm}^4 \times CP_2$ . The super-position of zero energy pairs of memetic codons associated with  $\delta H_+$  and  $\delta H_-$  could be interpreted as a representation of a Boolean function. Therefore the size scale of representation is measured in terms of the photon wavelength associated with the typical frequency in audible range.

Since super-canonical Hamiltonians depend on the radial light-like coordinate of  $\delta M^4_+$  via a power law and define logarithmic waves, logarithmic representation of codon is highly suggestive. This would mean that the 3-surface  $X^3_k$ representing k:th bit at  $\delta H_{\pm}$  has size proportional to say  $2^k$  (also more general scalings are possible). This allows to distinguish between bits, which is essential for generating selective spin flip inducing conscious bit. The most natural mechanism inducing the flip on spontaneously magnetized  $X^3_k$  is based on  $Z^0$ ME carrying transversal  $Z^0$  magnetic field with constant direction and having transversal sizes identical to that of  $X^3_k$ .

This representation does not favor large numbers of bits, and the requirement that cyclotron energies are in the range defined by thermal energy at room temperature and the energy 2 eV of photons which are still visible, favors 6-bit memetic code.

One can construct more complex 6*n*-bit codes (more generally *mn*-bit codes) by allowing several levels of dark matter hierarchy labelled by the values of  $\hbar_{eff}/\hbar_0 = 2^{6k}$ ,  $k = k_0, ..., k_0 + n$ . In this manner it is also possible to construct a fractal variant of the memetic code as a structured representation in which various levels of dark matter hierarchy (self hierarchy) represent m-bit bunches of information at various levels of abstraction. Given level in hierarchy experiences the level below as a mental image and the levels below that level are experienced as averages. This loss of information is an unavoidable consequence of having bird's eye of view.

# References

# Online books about TGD

- [1] M. Pitkänen (2006), Topological Geometrodynamics: Overview. http://www.helsinki.fi/~matpitka/tgdview/tgdview.html.
- [2] M. Pitkänen (2006), Quantum Physics as Infinite-Dimensional Geometry. http://www.helsinki.fi/~matpitka/tgdgeom/tgdgeom.html.
- [3] M. Pitkänen (2006), *Physics in Many-Sheeted Space-Time*. http://www.helsinki.fi/~matpitka/tgdclass/tgdclass.html.
- [4] M. Pitkänen (2006), Quantum TGD. http://www.helsinki.fi/~matpitka/tgdquant/tgdquant.html.
- [5] M. Pitkänen (2006), *TGD as a Generalized Number Theory*. http://www.helsinki.fi/~matpitka/tgdnumber/tgdnumber.html.
- [6] M. Pitkänen (2006), p-Adic length Scale Hypothesis and Dark Matter Hierarchy. http://www.helsinki.fi/~matpitka/paddark/paddark.html.
- [7] M. Pitkänen (2006), TGD and Fringe Physics. http://www.helsinki.fi/~matpitka/freenergy/freenergy.html.

# Online books about TGD inspired theory of consciousness and quantum biology

- [8] M. Pitkänen (2006), Bio-Systems as Self-Organizing Quantum Systems. http://www.helsinki.fi/~matpitka/bioselforg/bioselforg.html.
- [9] M. Pitkänen (2006), Quantum Hardware of Living Matter. http://www.helsinki.fi/~matpitka/bioware/bioware.html.
- [10] M. Pitkänen (2006), TGD Inspired Theory of Consciousness. http://www.helsinki.fi/~matpitka/tgdconsc/tgdconsc.html.
- [11] M. Pitkänen (2006), Mathematical Aspects of Consciousness Theory. http://www.helsinki.fi/~matpitka/genememe/genememe.html.
- M. Pitkänen (2006), TGD and EEG. http://www.helsinki.fi/~matpitka/tgdeeg/tgdeeg/tgdeeg.html.

- M. Pitkänen (2006), Bio-Systems as Conscious Holograms. http://www.helsinki.fi/~matpitka/hologram/hologram.html.
- M. Pitkänen (2006), Magnetospheric Consciousness. http://www.helsinki.fi/~matpitka/magnconsc/magnconsc.html.
- [15] M. Pitkänen (2006), Mathematical Aspects of Consciousness Theory. http://www.helsinki.fi/~matpitka/magnconsc/mathconsc.html.

# References to the chapters of books

- [C6] The chapter Was von Neumann Right After All of [4]. http://www.helsinki.fi/~matpitka/tgdquant/tgdquant.html#vNeumann.
- [D6] The chapter *TGD and Astrophysics* of [3]. http://www.helsinki.fi/~matpitka/tgdclass/tgdclass.html#astro.
- [E1] The chapter TGD as a Generalized Number Theory: p-Adicization Program of [5]. http://www.helsinki.fi/~matpitka/tgdnumber/tgdnumber.html#visiona.
- [E2] The chapter TGD as a Generalized Number Theory: Quaternions, Octonions, and their Hyper Counterparts of [5]. http://www.helsinki.fi/~matpitka/tgdnumber/tgdnumber.html#visionb.
- [E3] The chapter *TGD* as a Generalized Number Theory: Infinite Primes of [5]. http://www.helsinki.fi/~matpitka/tgdnumber/tgdnumber.html#visionc.
- [E9] The chapter *Topological Quantum Computation in TGD Universe* of [5]. http://www.helsinki.fi/~matpitka/tgdnumber/tgdnumber.html#tqc.
- [I1] The chapter Quantum Theory of Self-Organization of [8]. http://www.helsinki.fi/~matpitka/bioselforg/bioselforg.html#selforgac.
- [J6] The chapter Coherent Dark Matter and Bio-Systems as Macroscopic Quantum Systems of [9]. http://www.helsinki.fi/~matpitka/bioware/bioware.html#darkbio.
- [L1] The chapter Genes and Memes of [11]. http://www.helsinki.fi/~matpitka/genememe/genememe.html#genememec.
- [L2] The chapter Many-Sheeted DNA of [11]. http://www.helsinki.fi/~matpitka/genememe/genememe.html#genecodec.
- [M3] The chapter Dark Matter Hierarchy and Hierarchy of EEGs of [12]. http://www.helsinki.fi/~matpitka/tgdeeg/tgdeeg/tgdeeg.html#eegdark.

# Articles related to TGD

[16] Pitkänen, M. (1983) International Journal of Theor. Phys. ,22, 575.

# Mathematics related references

- [17] Eguchi, T., Gilkey, B., Hanson, J. (1980): Phys. Rep. 66, 6.
- [18] Hawking, S.,W. and Pope, C., N. (1978): Generalized Spin Structures in Quantum Gravity. Physics Letters Vol 73 B, no 1.
- [19] Gibbons, G., W., Pope, C., N. (1977): CP<sub>2</sub> as gravitational instanton. Commun. Math. Phys. 55, 53.
- [20] Pope, C., N. (1980): Eigenfunctions and Spin<sup>c</sup> Structures on CP<sub>2</sub>.
  D.A.M.T.P. preprint.
- [21] Eisenhart (1964): Riemannian Geometry. Princeton University Press.
- [22] Spivak, M. (1970): Differential Geometry I, II, III, IV. Publish or Perish. Boston.
- [23] Milnor, J. (1965): Topology form Differential Point of View. The University Press of Virginia.
- [24] E. C. Zeeman (ed.)(1977), Catastrophe Theory, Addison-Wessley Publishing Company.
- [25] Wallace (1968): Differential Topology. W. A. Benjamin, New York.

# References related to physics anomalies

[26] D. Da Roacha and L. Nottale (2003), Gravitational Structure Formation in Scale Relativity, astro-ph/0310036.